2*(a^2)=(576^2)

Simple and best practice solution for 2*(a^2)=(576^2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2*(a^2)=(576^2) equation:



2(a^2)=(576^2)
We move all terms to the left:
2(a^2)-((576^2))=0
determiningTheFunctionDomain 2a^2-576^2=0
We add all the numbers together, and all the variables
2a^2-331776=0
a = 2; b = 0; c = -331776;
Δ = b2-4ac
Δ = 02-4·2·(-331776)
Δ = 2654208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2654208}=\sqrt{1327104*2}=\sqrt{1327104}*\sqrt{2}=1152\sqrt{2}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-1152\sqrt{2}}{2*2}=\frac{0-1152\sqrt{2}}{4} =-\frac{1152\sqrt{2}}{4} =-288\sqrt{2} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+1152\sqrt{2}}{2*2}=\frac{0+1152\sqrt{2}}{4} =\frac{1152\sqrt{2}}{4} =288\sqrt{2} $

See similar equations:

| 2s−6=22s−6=22s−6=22s−6=22s−6=22s−6=2 | | -7x+11=-38 | | 10y+4y+y-5y=20 | | 11/2/3=n/8 | | x*x=7056 | | 6d+3d+d=10 | | 8c+6=14 | | 5x-9=3x-13 | | y=-1/3+-3 | | b/2+9=28 | | (6/x)=(4/48) | | 4=0.05x+2.5 | | 9d-8d=5 | | 1z-7z+z-10z+z=12 | | 12/8=41/2/n | | 2x-32=4(x-3) | | 24=31+x | | -2n^2+10=-6 | | -2n2+10=-6 | | 3/5=m | | y=0.05•47+2.5 | | 55/125=x/125 | | x*x=3844 | | 6.75=3/8x=131/4 | | 7n+21=22 | | 28/140=x/30 | | 17.06=3g+3.69 | | 2x+6=9x-4-68 | | 70/140=x/30 | | 210=3360x0.5^2 | | 2x+6=9x-4 | | -12a—7a=-5 |

Equations solver categories